Expressive Power.
 BSML and the Propositional Independence Logic PL(\perp, iv)

Søren Brinck Knudstorp
Dagstuhl Seminar 24117,
Logics for Dependence and Independence: Expressivity and Complexity

March 12, 2024
University of Amsterdam

Plan for the talk

- Background and Motivation
- Preliminaries
- Expressive Completeness of BSML
- Expressive Completeness of $\mathbf{P L}(\perp$, , v)
- Conclusion

Background and Motivation

- Aloni (2022) introduced BSML, a modal team logic for modeling linguistic phenomena.
- Aloni, Anttila and Yang (2023) considered two extensions:
- $\|\operatorname{BSML}(\mathbb{v})\|=\{$ All properties $\}$
- $\|$ BSML $(\oslash) \|=\{$ Union-closed properties $\}$
- $\|\mathrm{BSML}\|=$?
- The expressive power of BSML's propositional analogue PL(NE) an open problem (Yang and Väänänen 2017).
- As is the expressive power of $\mathbf{P L}(\perp, \mathbb{v})$.
- Today, we show that:

1. BSML and $\mathbf{P L}(\mathrm{NE})$ are expressively complete for all convex, union-closed properties.
2. $\mathbf{P L}(\perp, \sqrt[v]{ })$ is expressively complete for all properties that are (i) <4-closed, (ii) \downarrow-singleton closed, and (iii) contains the empty team.

For the sake of simplicity, we only consider the propositional versions; i.e., PL(NE) instead of BSML.

PL(NE): Definition

Definition (PL(NE): Syntax and team-semantic clauses)

Syntax of PL(Ne):

$$
\varphi::=p|\neg p|(\varphi \wedge \varphi)|(\varphi \vee \varphi)| \mathrm{NE}
$$

Semantics: Let $X:=\{v \mid v: \operatorname{Prop} \rightarrow\{0,1\}\}$. For $t \in \mathcal{P}(X)$, we define

$$
\begin{array}{lll}
t \vDash p & \text { iff } & \forall v \in t: v(p)=1, \\
t \vDash \neg p & \text { iff } & \forall v \in t: v(p)=0, \\
t \vDash \varphi \wedge \psi & \text { iff } & s \vDash \varphi \text { and } s \vDash \psi, \\
t \vDash \varphi \vee \psi & \text { iff } & \text { there exist } t^{\prime}, t^{\prime \prime} \in \mathcal{P}(X) \text { such that } t^{\prime} \vDash \varphi ; \\
& & t^{\prime \prime} \vDash \psi ; \text { and } t=t^{\prime} \cup t^{\prime \prime}, \\
t \vDash N E & \text { iff } & t \neq \varnothing .
\end{array}
$$

OBS: From here on out, we fix a finite set of propositional letters Prop, considering teams

$$
\text { over } X:=\{v \mid v: \text { Prop } \rightarrow\{0,1\}\} .
$$

PL(NE): Expressive Power

Definition (Expressive completeness)

- A (team) property is a set of teams $S \subseteq \mathcal{P}(X)$.
- Observe that the 'truthset' of a formula φ, defines a property:

$$
\|\varphi\|:=\{t \in \mathcal{P}(X) \mid t \vDash \varphi\} \subseteq \mathcal{P}(X)
$$

- And that a set of formulas Γ defines a set of properties

$$
\|\Gamma\|:=\{\|\varphi\| \mid \varphi \in \Gamma\} \subseteq \mathcal{P} \mathcal{P}(X) .
$$

- A logic (or language) \mathcal{L} is expressively complete for a set of properties $\mathcal{S} \subseteq \mathcal{P} \mathcal{P}(X)$:iff

$$
\|\mathcal{L}\|=\mathcal{S}
$$

Theorem (expressive completeness of PL(NE))

$$
\|\mathbf{P L}(\mathrm{NE})\|=\{\text { property } S \subseteq \mathcal{P}(X) \mid S \text { is convex and union closed }\}
$$

PL(NE): Proof of Expressive Power

Useful fact: PL is expressively complete for all downward- and union-closed properties containing the empty team.

Theorem (expressive completeness of PL(NE))
$\|\mathbf{P L}(\mathrm{NE})\|=\{$ property $S \subseteq \mathcal{P}(X) \mid S$ is convex and union closed $\}$

Proof.

' \subseteq ':

- Union closure: By induction, already known
- Convexity: By induction, *see blackboard*
' \supseteq ': Let S be a convex, union-closed set of teams.
- If $\varnothing \in S$, then by convexity, it is downward closed, so done
- If $\varnothing \notin S=\left\{t_{1}, \ldots, t_{n}\right\}$, we claim that $\left\|\phi_{S}\right\|=S$ where

$$
\phi_{S}:=\bigvee\left\{\operatorname{NE} \wedge\left(\chi_{v_{1}} \vee \cdots \vee \chi_{v_{n}}\right) \mid\left(v_{1}, \ldots, v_{n}\right) \in\left(t_{1} \times \cdots \times t_{n}\right)\right\}
$$

See blackboard

Summary so far

Modal case:

- $\|\operatorname{BSML}(\mathbb{*})\|=\{$ All properties $\}$
- $\|\operatorname{BSML}(\oslash)\|=\{$ Union-closed properties $\}$
- $\|\mathbf{B S M L}\|=\{$ Convex and union-closed properties\}

Propositional case:

$$
\left\{\begin{array}{l}
\| \mathbf{P L}(\text { NE, } v) \|=\{\text { All properties }\} \\
\| \mathbf{P L}(\text { NE, } \oslash) \|=\{\text { Union-closed properties }\} \\
\|\mathbf{P L}(\mathrm{NE})\|=\{\text { Convex and union-closed properties }\}
\end{array}\right.
$$

Question: Can we find a logic/language expressively complete for all convex properties simpliciter?
Answer: Yes! Aleksi Anttila has found such!

What about ||PL($\perp, \vee)|\mid ?$

PL(\perp, \vee): Definition and Expressive Power

Definition ($\mathbf{P L}(\perp$, v $)$: Syntax and team-semantic clauses)
Syntax of $\mathbf{P L}(\perp$, v $)$:

$$
\varphi::=p|\neg p| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \mathbb{V} \varphi \mid \alpha \perp \beta,
$$

where α, β are \perp-free.
Additional semantic clauses:

$$
\begin{array}{lll}
t \vDash \varphi \mathbb{v} \psi & \text { iff } & t \vDash \varphi \text { or } t \vDash \psi . \\
t \vDash \alpha \perp \beta & \text { iff } & \forall v, v^{\prime} \in t \exists v^{\prime \prime} \in t:\left[v(\alpha)=v^{\prime \prime}(\alpha)\right] \text { and }\left[v^{\prime}(\beta)=v^{\prime \prime}(\beta)\right] .
\end{array}
$$

Theorem (expressive completeness of $\mathrm{PL}(\perp, \mathrm{v})$)

$$
\begin{aligned}
\|\mathbf{P L}(\perp, \mathbb{v})\|=\{\text { property } S \subseteq \mathcal{P}(X) \mid & S \text { contains } \varnothing, \text { is }<4 \text {-closed } \\
& \text { and } \downarrow \text {-singleton closed }\}
\end{aligned}
$$

PL (\perp, \mathbb{v}) : Proof of Expressive Power

Theorem (expressive completeness of $\mathrm{PL}(\perp, \mathrm{v})$)

$$
\begin{aligned}
\|\mathbf{P L}(\perp, \mathbb{v})\|=\{\text { property } S \subseteq \mathcal{P}(X) \mid & S \text { contains } \varnothing, \text { is }<4 \text {-closed } \\
& \text { and } \downarrow \text {-singleton closed }\}
\end{aligned}
$$

Proof.

' \subseteq ' follows by induction.
For ' \supseteq ', given $S \subseteq \mathcal{P}(X)$, let

$$
\phi_{S}^{\prime}:=\backslash \bigvee_{t \in S} \phi_{t}^{\prime}
$$

where

$$
\phi_{t}^{\prime}=\left\{\begin{array}{ll}
\chi_{t} & \text { if }|t|<4 \\
\chi_{t} \wedge \bigwedge_{t^{\prime} \subsetneq t,\left|t^{\prime}\right| \geq 2}\left[\left(\chi_{v} \vee \chi_{v_{1}}\right) \perp\left(\chi_{v} \vee \chi_{v_{2}}\right)\right] & \text { if }|t| \geq 4
\end{array},\right.
$$

where $v \in t \backslash t^{\prime}, v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\} \subseteq t^{\prime}$.
One can then show that $\left\|\phi_{S}^{\prime}\right\|=S$.

Conclusion

What we have done:

- Characterized the expressive power of PL(NE) (and BSML) and PL(\perp, , v)
- Obtained normal forms the logics of concern

What (might) come next:

- Writing paper with Aleksi Anttila on the convex logics
- Perhaps, trying to find a FO team logic expressively complete for all convex properties
- Let us (me and Aleksi) know if you are interested in working on this! :)

Thank you!

