EXPRESSIVE POWER.

${f BSML}$ and the Propositional Independence Logic ${f PL}(\bot, \lor)$

Søren Brinck Knudstorp

Dagstuhl Seminar 24111, Logics for Dependence and Independence: Expressivity and Complexity

March 12, 2024

University of Amsterdam

- Background and Motivation
- Preliminaries
- Expressive Completeness of \mathbf{BSML}
- Expressive Completeness of $\mathbf{PL}(\bot, {\scriptscriptstyle \mathbb{V}})$
- Conclusion

Background and Motivation

- Aloni (2022) introduced **BSML**, a modal team logic for modeling linguistic phenomena.
- Aloni, Anttila and Yang (2023) considered two extensions:

 $\bullet ||\mathbf{BSML}(\vee)|| = \{\mathsf{All properties}\}$

• $||\mathbf{BSML}(\otimes)|| = \{\mathsf{Union-closed properties}\}$

• $||\mathbf{BSML}|| = ?$

- The expressive power of \mathbf{BSML} 's propositional analogue $\mathbf{PL}(NE)$ an open problem (Yang and Väänänen 2017).
- As is the expressive power of $\mathbf{PL}(\bot, {\mathbb V}).$
- Today, we show that:
 - BSML and PL(NE) are expressively complete for all convex, union-closed properties.
 - PL(⊥, ∨) is expressively complete for all properties that are (i) <4-closed, (ii) ↓-singleton closed, and (iii) contains the empty team.

For the sake of simplicity, we only consider the propositional versions; i.e., **PL**(NE) instead of **BSML**.

$\mathbf{PL}(\texttt{NE})\text{:}$ Definition

Definition ($\mathbf{PL}(NE)$: Syntax and team-semantic clauses) Syntax of $\mathbf{PL}(NE)$:

 $\varphi ::= p \mid \neg p \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid \mathsf{NE}$

Semantics: Let $X := \{v \mid v : \mathbf{Prop} \to \{0, 1\}\}$. For $t \in \mathcal{P}(X)$, we define

$$\begin{split} t &\models p & \text{iff} \quad \forall v \in t : v(p) = 1, \\ t &\models \neg p & \text{iff} \quad \forall v \in t : v(p) = 0, \\ t &\models \varphi \land \psi & \text{iff} \quad s &\models \varphi \text{ and } s &\models \psi, \\ t &\models \varphi \lor \psi & \text{iff} \quad \text{there exist } t', t'' \in \mathcal{P}(X) \text{ such that } t' &\models \varphi; \\ t'' &\models \psi; \text{ and } t = t' \cup t'', \\ t &\models \text{NE} & \text{iff} \quad t \neq \varnothing. \end{split}$$

OBS: From here on out, we fix a *finite* set of propositional letters **Prop**, considering teams over $X := \{v \mid v : \operatorname{Prop} \to \{0, 1\}\}$.

$\mathbf{PL}(\mathbf{NE})$: Expressive Power

Definition (Expressive completeness)

- A (team) property is a set of teams $S \subseteq \mathcal{P}(X)$.
- Observe that the 'truthset' of a formula φ , defines a property:

$$||\varphi|| := \{t \in \mathcal{P}(X) \mid t \vDash \varphi\} \subseteq \mathcal{P}(X).$$

 \cdot And that a set of formulas Γ defines a set of properties

$$||\Gamma|| := \{||\varphi|| \mid \varphi \in \Gamma\} \subseteq \mathcal{PP}(X).$$

• A logic (or language) \mathcal{L} is expressively complete for a set of properties $\mathcal{S} \subseteq \mathcal{PP}(X)$:iff

$$||\mathcal{L}|| = \mathcal{S}$$

Theorem (expressive completeness of PL(NE))

 $||\mathbf{PL}(NE)|| = \{ \text{property } S \subseteq \mathcal{P}(X) \mid S \text{ is convex and union closed} \}$

$\mathbf{PL}(\mathbf{NE})$: Proof of Expressive Power

Useful fact: PL is expressively complete for all downward- and union-closed properties containing the empty team.

Theorem (expressive completeness of PL(NE))

 $||\mathbf{PL}(NE)|| = \{ \text{property } S \subseteq \mathcal{P}(X) \mid S \text{ is convex and union closed } \}$

Proof.

'⊆':

- \cdot Union closure: By induction, already known \checkmark
- Convexity: By induction, *see blackboard*
- '⊇': Let S be a convex, union-closed set of teams.
 - If $arnothing \in S$, then by convexity, it is downward closed, so done \checkmark
 - · If $\varnothing \notin S = \{t_1, \ldots, t_n\}$, we claim that $||\phi_S|| = S$ where

$$\phi_S := \bigvee \{ \mathsf{NE} \land (\chi_{v_1} \lor \dots \lor \chi_{v_n}) \mid (v_1, \dots, v_n) \in (t_1 \times \dots \times t_n) \}$$

See blackboard

Summary so far

Modal case:

- ${\color{black}\bullet} \mid \mid \mathbf{BSML}(\lor) \mid \mid = \{ \mathsf{All properties} \}$
- $||\mathbf{BSML}(\oslash)|| = \{ \text{Union-closed properties} \}$
- ||**BSML**|| = {Convex and union-closed properties}

Propositional case:

- $\bullet ||\mathbf{PL}(NE, w)|| = \{All \text{ properties}\}$
- $||\mathbf{PL}(NE, \oslash)|| = \{Union-closed properties\}$
- $||\mathbf{PL}(NE)|| = \{$ Convex and union-closed properties $\}$

Question: Can we find a logic/language expressively complete for all convex properties simpliciter?

Answer: Yes! Aleksi Anttila has found such!

What about $||\mathbf{PL}(\bot, \lor)||$?

$\mathbf{PL}(\bot, \lor)$: Definition and Expressive Power

Definition ($\mathbf{PL}(\bot, w)$): Syntax and team-semantic clauses) Syntax of $\mathbf{PL}(\bot, w)$:

$$\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \alpha \bot \beta,$$

where α, β are \perp -free. Additional semantic clauses:

$$\begin{split} t &\models \varphi \lor \psi \quad \text{iff} \quad t \models \varphi \text{ or } t \models \psi. \\ t &\models \alpha \bot \beta \quad \text{iff} \quad \forall v, v' \in t \exists v'' \in t : [v(\alpha) = v''(\alpha)] \text{ and } [v'(\beta) = v''(\beta)]. \end{split}$$

Theorem (expressive completeness of $\mathbf{PL}(\bot, \lor)$)

 $||\mathbf{PL}(\bot, w)|| = \{ \text{property } S \subseteq \mathcal{P}(X) \mid S \text{ contains } \emptyset, \text{ is } <4\text{-closed} \\ \text{and } \downarrow\text{-singleton closed} \}$

$\mathbf{PL}(\bot, \lor)$: Proof of Expressive Power

Theorem (expressive completeness of $\mathbf{PL}(\bot, \lor)$)

 $||\mathbf{PL}(\bot, \mathbb{V})|| = \{ \text{property } S \subseteq \mathcal{P}(X) \mid S \text{ contains } \emptyset, \text{ is } <4\text{-closed} \\ \text{and } \downarrow\text{-singleton closed} \}$

Proof.

'⊆' follows by induction. For '⊇', given $S \subseteq \mathcal{P}(X)$, let

$$\phi'_S := \bigvee \!\!\!/_{t \in S} \phi'_t,$$

where

$$\phi_t' = \begin{cases} \chi_t & \text{if } |t| < 4\\ \chi_t \land \bigwedge_{t' \subsetneq t, |t'| \ge 2} [(\chi_v \lor \chi_{v_1}) \bot (\chi_v \lor \chi_{v_2})] & \text{if } |t| \ge 4 \end{cases}$$

where $v \in t \setminus t'$, $v_1 \neq v_2$ and $\{v_1, v_2\} \subseteq t'$. One can then show that $||\phi'_S|| = S$.

What we have done:

- Characterized the expressive power of $\mathbf{PL}(\mathtt{NE})$ (and $\mathbf{BSML})$ and $\mathbf{PL}(\bot, {\mathbb V})$
- Obtained normal forms the logics of concern

What (might) come next:

- Writing paper with Aleksi Anttila on the convex logics
- Perhaps, trying to find a FO team logic expressively complete for all convex properties
 - Let us (me and Aleksi) know if you are interested in working on this! :)

Thank you!